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Background 
1. Discretizing general transport equation terms 

Tutorial Four aims to help the users understand the different discretization schemes in 
OpenFOAM®.  But before that, it is important to understand the exact mathematical 
procedures involved in discretization. Below is a detailed explanation of how each 
term of the transport equation is discretized.  

1.1. Time derivative 

Discretization of the time derivative such as 𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 of the transport equation is 
performed by integrating it over the control volume of a grid cell. Here, the Euler 
implicit time differencing scheme is explained. It is unconditionally stable, but only 
first order accurate in time. Assuming linear variation of φ within a time step gives: 

  �
𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑑𝑑𝑑𝑑
𝑉𝑉

≈
𝜌𝜌𝑃𝑃𝑛𝑛𝜑𝜑𝑃𝑃𝑛𝑛 − 𝜌𝜌𝑃𝑃0𝜑𝜑𝑃𝑃0

∆𝑡𝑡
𝑉𝑉𝑃𝑃           

Where 𝜑𝜑𝑛𝑛 ≡ 𝜑𝜑 (𝑡𝑡 + ∆𝑡𝑡) stands for the new value at the time step we are solving for 
and 𝜑𝜑0 ≡ 𝜑𝜑(𝑡𝑡) denotes old values from the previous time step. 

1.2. Convection term 

Discretization of convection terms is performed by integrating over a control volume 
and transforming the volume integral into a surface integral using the Gauss's theorem 
as follows: 

� 𝒏𝒏 ∙ (𝜌𝜌𝜌𝜌𝒖𝒖)
𝐴𝐴

𝑑𝑑𝑑𝑑 ≈�𝒏𝒏 ∙ (𝐴𝐴𝐴𝐴𝒖𝒖)𝑓𝑓𝜑𝜑𝑓𝑓 =
𝑓𝑓

�𝐹𝐹𝜑𝜑𝑓𝑓
𝑓𝑓

      

Where F is the mass flux through the face 𝑓𝑓 defined as 𝐹𝐹 = 𝒏𝒏 ∙ (𝐴𝐴𝐴𝐴𝒖𝒖)𝑓𝑓. The value 𝜑𝜑𝑓𝑓 
on face f can be evaluated in a variety of ways which will be covered later in 
section 2. The subscript 𝑓𝑓 refers to a given face. 

1.3. Diffusion term 

Discretization of diffusion terms is done in a similar way to the convection terms. 
After integration over the control volume, the term is converted into a surface 
integral: 

� 𝒏𝒏 ∙ (𝛤𝛤∇𝜑𝜑)
𝐴𝐴

𝑑𝑑𝑑𝑑 = �𝛤𝛤𝑓𝑓(𝒏𝒏 ∙ ∇𝑓𝑓𝜑𝜑)𝐴𝐴𝑓𝑓
𝑓𝑓

         

Note that the above approximation is only valid if Γ is a scalar. Here, ∇𝑓𝑓𝜑𝜑 denotes the 
gradient at the face, 𝐴𝐴 denotes the surface area of the control volume and 𝐴𝐴𝑓𝑓 denotes 
the area of a face for the control volume. It does not, however, imply a specific 
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discretization technique. The face normal gradient can be approximated using the 
scheme: 

𝒏𝒏 ∙ ∇𝑓𝑓𝜑𝜑 =
𝜑𝜑𝑁𝑁 − 𝜑𝜑𝑃𝑃

|𝒅𝒅|         

This approximation is second order accurate when the vector 𝒅𝒅 between the center of 
the cell of interest P and the center of a neighboring cell N is orthogonal to the face 
plane, i.e. parallel to A. In the case of non-orthogonal meshes, a correction term could 
be introduced which is evaluated by interpolating cell centered gradients obtained 
from Gauss integration. 

1.4. Source term 

Source terms, such as 𝑆𝑆𝜑𝜑of the transport equation, can be a general function of φ. 
Before discretization, the term is linearized: 

𝑆𝑆𝜑𝜑 = 𝜑𝜑𝑆𝑆𝐼𝐼 + 𝑆𝑆𝐸𝐸         

where 𝑆𝑆𝐸𝐸 and 𝑆𝑆𝐼𝐼 may depend on φ. The term is then integrated over a control volume 
as follows: 

� 𝑆𝑆𝜑𝜑𝑑𝑑𝑑𝑑
𝑉𝑉

= 𝑆𝑆𝐼𝐼V𝑃𝑃φ𝑃𝑃 + 𝑆𝑆𝐸𝐸V𝑃𝑃              

There is some freedom on exactly how a particular source term is linearized. When 
deciding on the form of discretization (e.g. linear, upwind), its interaction with other 
terms in the equation and its influence on boundedness and accuracy should be 
examined.  

2.  Discretization Schemes 
 
Since the results of CFD simulations are typically stored at the cell centers, it is 
important to interpolate the results from cell centers to the face centers, to obtain the 
fluxes for the surface integrals in the transport equation. For each term of the transport 
equation, there is a variety of discretization/interpolation schemes available.  
 
In general, interpolation needs a flux F through a general face f, and in some cases, 
one or more parameters 𝛾𝛾. The face value 𝜑𝜑𝑓𝑓 can be evaluated from the values in the 
neighboring cells using a variety of schemes. The flux satisfies continuity constraints, 
which is prerequisite to obtaining the results.  
 
2.1. First Order Upwind Scheme 

In first order upwind scheme we define φ as follows: 

Note: Here we define two faces, 𝑒𝑒 and 𝑤𝑤. To obtain flux through faces e and w, we 
need to look its neighbouring values at P/E and W/P respectively. The subscripts 
denote the face at which the face value 𝜑𝜑 or the flux F is located at. 

              𝜑𝜑𝑒𝑒 = 𝜑𝜑𝑃𝑃          𝑖𝑖𝑖𝑖,𝐹𝐹𝑒𝑒 > 0  
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                    𝜑𝜑𝑒𝑒 = 𝜑𝜑𝐸𝐸           𝑖𝑖𝑖𝑖,𝐹𝐹𝑒𝑒 < 0          

 
First Order Upwind Scheme 

𝜑𝜑𝑤𝑤 is also defined similarly (Positive direction is from W to E).  

2.2. Central Differencing Scheme 

Here, we use linear interpolation for computing the cell face values. 

𝜑𝜑𝑒𝑒 =
𝜑𝜑𝐸𝐸 + 𝜑𝜑𝑃𝑃

2
,          𝜑𝜑𝑤𝑤 =

𝜑𝜑𝑃𝑃 + 𝜑𝜑𝑊𝑊
2

           

 
Central Differencing Scheme 

 
2.3. QUICK 

QUICK stands for Quadratic Upwind Interpolation for Convective Kinetics. In the 
QUICK scheme 3 point upstream-weighted quadratic interpolation are used for cell 
face values. 

When 𝐹𝐹𝑒𝑒 > 0,          φ𝑒𝑒 =
6
8
φ𝑃𝑃 +

3
8
φ𝐸𝐸 −

1
8
φ𝑊𝑊 

When 𝐹𝐹𝑤𝑤 > 0,          φ𝑤𝑤 =
6
8
φ𝑊𝑊 +

3
8
φ𝑃𝑃 −

1
8
φ𝑊𝑊𝑊𝑊 
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QUICK scheme 

Similar expressions can be obtained for 𝐹𝐹𝑒𝑒 < 0 and 𝐹𝐹𝑤𝑤 < 0. 

Now that you know a bit more about discretization schemes, we can move on to the 
tutorial. In this tutorial the scalarTransportFoam solver is used. More explanation of 
this solver can be found below.  

4. scalarTransportFoam solver 

scalarTransportFoam is a basic solver which resolves a transport equation for a 
passive scalar. The velocity field and boundary condition need to be provided by the 
user. It works by setting the source term in the transport equation to zero (see equation 
below), and then solving the equation.  

𝜕𝜕(𝜌𝜌𝜌𝜌)
𝜕𝜕𝜕𝜕

+ ∇ ∙ (𝜌𝜌𝜌𝜌𝒖𝒖) − ∇ ∙ (𝛤𝛤∇𝜑𝜑) = 0 
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scalarTransportFoam – shockTube 

Simulation 

Use the scalarTransportFoam solver, simulate 5 s of flow inside a shock tube, with 1D 
mesh of 1000 cells (10 m long geometry from -5 m to 5 m). Patch with a scalar of 1 
from -0.5 to 0.5. Simulate following cases: 

• Set U to uniform (0 0 0). Vary diffusion coefficient (low, medium and high 
value).  

• Set the diffusion coefficient to zero and also U to (1 0 0) and run the 
simulation in the case of pure advection using following discretization 
schemes:  

- upwind 

- linear 

- linearUpwind  

- QUICK  

- cubic 

Objectives 

• Understanding different discretization schemes. 

Data processing 

Import your simulation into ParaView, and plot temperature along tube length.  
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1. Pre-processing 
1.1. Compile tutorial 
Create a folder in your working directory: 

>mkdir shockTube 

Copy the following case to the created directory: 

$FOAM_TUTORIALS/compressible/rhoPimpleFoam/laminar/shockTube  

OpenFOAM® v1906: 
$FOAM_TUTORIALS/compressible/sonicFoam/laminar/shockTube 

In the 0 directory, create a copy of T.orig and U.orig and rename them to T and U 
respectively. In the constant directory delete the thermophysicalProperties and 
turbulenceProperties files, and in the system directory delete all the files except for 
blockMeshDict and setFieldsDict files. 

OpenFOAM® v1906: Create a copy of 0.orig folder, rename it to 0 and delete the p 
file in 0 directory! 

 
From the following case:  
$FOAM_TUTORIALS/basic/scalarTransportFoam/pitzDaily 

Copy transportProperties file from constant folder in the newly created case constant 
folder. Copy controlDict, fvSchemes and fvSolution from the above case system 
directory to the created case system directory. 

1.2. constant directory 
The diffusion coefficient can be set in the transportProperties file. For a low value try 
0.00001, for a medium value use 0.01 and for a high value use 1: 

DT   DT [ 0 2 -1 0 0 0 0] 0.01; 

Note: By setting the diffusion coefficient to zero, the case will be switched to a pure 
advection simulation with no diffusion. 

OpenFOAM® v1906: Just DT and its value are listed – no dimensions! 

1.3. system directory 
Edit the setFieldsDict, to patch the T field to 1.0 between -0.5 m and 0.5 m and to set 
the U to (0 0 0) for the whole domain. For setting U in the whole domain to (1 0 0), 
just change (0 0 0) to (1 0 0): 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* * * * * *// 
defaultFieldValues  
(  



  
OpenFOAM® Basic Training 

Tutorial Four 
 

 

volVectorFieldValue U ( 0 0 0 )  
volScalarFieldValue T 0.0  

); 
regions          
(  

boxToCell  
{  

box ( -0.5 -1 -1 ) ( 0.5 1 1 ); 
  
fieldValues  
(  

volScalarFieldValue T 1.0 
);  

}  
); 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* * * * * *// 

In the controlDict, update the endTime to 5 for 5s of simulation. As it was 
mentioned before, the discretization scheme for each operator of the governing 
equations can be set in fvSchemes. 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* * * * * *// 
ddtSchemes 
{ 
    default         Euler; 
} 
 
gradSchemes 
{ 
    default         Gauss linear; 
} 
 
divSchemes 
{ 
    default         none; 
    div(phi,T)      Gauss linearUpwind grad(T); 
} 
 
laplacianSchemes 
{ 
    default         none; 
    laplacian(DT,T) Gauss linear corrected; 
} 
 
interpolationSchemes 
{ 
    default         linear; 
} 
 
snGradSchemes 
{ 
    default         corrected; 
} 
 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* * * * * *// 

For each type of operation a default scheme can be set (e.g. for divSchemes is set to 
none, it means no default scheme is set). Also a special type of discretization for each 
element can be assigned (e.g. div(phi,T) it is set to linearUpwind). For each 
element, where a discretization method has not been set, the default method will be 
applied. If the default setting is none, no scheme is set for that element and the 
simulation will crash. 
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Note: In fvSchemes, the schemes for the time term of the general transport equation 
are set in ddtSchemes sub-dictionary. divSchemes are responsible for the 
advection term schemes and laplacianSchemes set the diffusion term schemes.  

Note: divSchemes should be applied like this: Gauss + scheme. The Gauss keyword 
specifies the standard finite volume discretization of Gaussian integration which 
requires the interpolation of values from cell centers to face centers. Therefore, the 
Gauss entry must be followed by the choice of interpolation scheme 
(www.openfoam.org). 

2. Running simulation 
>blockMesh 
>setFields 
>scalarTransportFoam 

3. Post-processing 
The simulation results are as follows. 
A) Case with zero velocity (pure diffusion): 

 
Pure diffusion with low diffusivity (0.00001) at t = 5 s 

 

 
Pure diffusion with medium diffusivity (0.01) at t = 5 s 
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Pure diffusion with high diffusivity (1) at t = 5 s 

 
B) Case with pure advection (diffusion coefficient = 0): 

 
Scalar T along tube at t = 4 s  

The cubic scheme predicted an unexpected rise in temperature between around 0 to 1 
m, which differs hugely from the other schemes. This can be explained by looking at 
the numerical behavior of the cubic scheme. It is operated in fourth order accuracy 
with unbounded solutions, which caused another false root solution to be found. So, 
higher order accuracy does not always generate better results! 
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